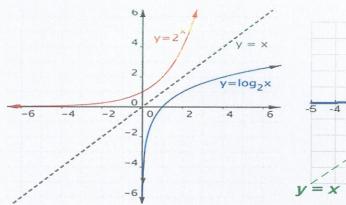
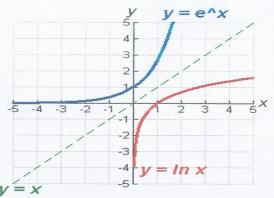
Math III Logs and Exponential

Transforming from exponential form to logarithmic form

Exponential Form


$$y = b^{x}$$


$$y = \log_b x$$

$$v = e^{2}$$

$$y = \ln x$$

 $y=b^x$ and $y=\log_b x$ are inverses of each other as well as $y=e^x$ and $y=\ln x$. Their graphs are reflections across the y=x line

Logarithm Rules

$$\log_b(xy) = \log_b x + \log_b y$$

$$\log_b\left(\frac{x}{y}\right) = \log_b x - \log_b y$$

$$\log_b(x^y) = y \log_b x$$

$$\log_b x = \frac{\log x}{\log b}$$

1. Which is the function $2^{x-1} = 8$ written in logarithmic form?

A.
$$\log_2 x - 1 = 8$$

C.
$$\log_8 x - 1 = 2$$

B.
$$x = \log_2 8 + 1$$

D.
$$x = \log_2 8 - 1$$

2. Sally opened a savings account that earns 8% interest compounded continuously in order to save money for a \$4500 car. So far Sally has saved \$2500. How many years did it take for Sally to save enough money to buy the car if she did not add any more money to the account?

A.
$$x = \frac{\ln(\frac{9}{5})}{.08}$$

B.
$$x = \frac{.08}{\ln(\frac{9}{5})}$$

A.
$$x = \frac{\ln(\frac{9}{5})}{.08}$$
 B. $x = \frac{.08}{\ln(\frac{9}{5})}$ C. $x = \log_{1.08}(\frac{9}{5})$ D. $x = \log_{\frac{9}{5}} 1.08$

D.
$$x = \log_{\frac{9}{5}} 1.08$$

3. Which of the following is equivalent to $e^{4x} = 2981$?

A.
$$x = \frac{\ln 2981}{4}$$
 B. $x = \frac{4}{\ln 2981}$ C. $x = \frac{\ln 4}{2981}$ D. $x = \frac{2981}{\ln 4}$

B.
$$x = \frac{4}{\ln 2981}$$

C.
$$x = \frac{\ln 4}{2981}$$

D.
$$x = \frac{2981}{\ln 4}$$

4. Which of the following is equivalent to $2^{3x-4} = 32$?

A.
$$x = \frac{\log_2 32}{3} + 4$$
 B. $x = \frac{\log_2 32 + 4}{3}$ C. $\log_2 3x - 4 = 32$

B.
$$x = \frac{\log_2 32 + 4}{3}$$

C.
$$\log_2 3x - 4 = 32$$

- 5. Given the function: $f(x) = 2 \log_2(2x)$
 - A. Sketch the graph
 - B. State the *x*-intercept?
 - C. State the domain and range?
 - D. Describe the end behavior as x approaches ∞ .